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Prediction of User Preference over Shared-Control Paradigms
for a Robotic Wheelchair

Ahmetcan Erdogan1 and Brenna D. Argall2

Abstract— The design of intelligent powered wheelchairs has
traditionally focused heavily on providing effective and efficient
navigation assistance. Significantly less attention has been
given to the end-user’s preference between different assistance
paradigms. It is possible to include these subjective evaluations
in the design process, for example by soliciting feedback in
post-experiment questionnaires. However, constantly querying
the user for feedback during real-world operation is not
practical. In this paper, we present a model that correlates
objective performance metrics and subjective evaluations of
autonomous wheelchair control paradigms. Using off-the-shelf
machine learning techniques, we show that it is possible to
build a model that can predict the most preferred shared-
control method from task execution metrics such as effort,
safety, performance and utilization. We further characterize the
relative contributions of each of these metrics to the individual
choice of most preferred assistance paradigm. Our evaluation
includes Spinal Cord Injured (SCI) and uninjured subject
groups. The results show that our proposed correlation model
enables the continuous tracking of user preference and offers
the possibility of autonomy that is customized to each user.

I. INTRODUCTION

Robotics autonomy has the potential to assist an estimated
1.4 to 2.1 million powered wheelchair users in the United
States [1]. Recent years in particular have been marked by
the development of different control paradigms that share
the control with user in various ways. Deciding exactly how
much and how often assistance should be provided is critical
for end-user acceptance, and will be a key factor in the large-
scale adoption of these systems.

Autonomy in wheelchairs can be tuned according to tradi-
tional robotics metrics that prioritize efficiency and success
in task performance. However, an additional consideration is
the fact that most end-users prefer to retain as much control
as is possible [2]. Moreover, each user is unique in their
needs, personal preferences and desired level of assistance.
Maintaining a balance between performance and end-user
preference, therefore, is essential in determining the proper
sharing of control between the user and autonomy.

Within the smart (i.e robotics) wheelchair literature, sub-
jective evaluations are most commonly utilized in order
to gather opinions about no autonomy (only human input)
versus full autonomy (no human input), or a single shared-
control paradigm (a combination of human and autonomy

1Ahmetcan Erdogan is with Physical Medicine and Rehabilitation North-
western University, and the Rehabilitation Institute of Chicago, Chicago, IL
- USA ahmetcan.erdogan@northwestern.edu

2Brenna D. Argall is with Physical Medicine and Rehabilitation, Electri-
cal and Computer Engineering, and Mechanical Engineering, Northwestern
University, and the Rehabilitation Institute of Chicago, Chicago, IL - USA
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input). There exist a limited number of studies that compare
multiple control paradigms on hardware, and none of these
studies investigate potential connections between objective
execution metrics and subjective user preference metrics.

In order to bridge the gap between performance and prefer-
ence, our work aims to experimentally model the correlations
between subjective and objective metrics across multiple
shared-control paradigms. We have previously compared
multiple shared-control paradigms and control interfaces in a
systematic experiment that spans multiple sessions [3]. The
high variability observed in the most effective and accepted
paradigms between subjects and over control interfaces sup-
ports the idea of offering end-users multiple control options
to accommodate their individual needs and preferences.

It however may not be practical to continuously query the
user for their preference. Therefore, we extend our previous
work by modeling the correlation between task-related met-
rics and post-experiment subjective evaluations. Our model
successfully captures the experimentally-observed changes
between subject groups and sessions, while providing unique
insight into the relative contribution of task metrics such as
effort, safety, performance and utilization. Our overarching
aim is to continuously estimate user preference over multiple
assistance paradigms which can then be used to modify
and/or switch the way in which control is shared.

The rest of the paper is organized as follows. Section II
provides a review of related literature on smart wheelchair
research. Section III details the control and hardware archi-
tectures of our NURIC SMART WHEELCHAIR, including the
four tested shared-control paradigms. The correlation model
and experimental results are provided in Sections IV and V.
Section VI concludes the paper.

II. BACKGROUND

Exploratory qualitative studies that investigate the perspec-
tives of caregivers, therapists and powered wheelchair users
are common in the smart wheelchair domain. In these studies,
open-ended questions are discussed to characterize the needs
and desires of these populations—such as decreased risk
of collisions and increased social behavior [4]. To address
these desires, different shared-control approaches have been
proposed that span a wide range of options between the two
extremums of full autonomy and full teleoperation.

Studies that investigate the subjective evaluation of these
systems highlight some key requirements from the users.
End-users are shown to be most frustrated with full auton-
omy because they feel that they have the least control [5],



and they demonstrate a high desire to be in control when they
are asked to evaluate different controllers in simulation [6].

There are also shared-control methods that rely on user
input for the entire trajectory in order to accommodate
the desire to be in control. This approach necessitates a
way to reason between two (possibly conflicting) signals
generated by the user and autonomy. One possibility is to
continually blend these two signals in a weighted sum, where
the blending ratio may be constant or change with respect to
metrics like comfort, transparency or safety [7]. A different
approach is to partition the control space between the human
and the autonomy. Here, the aim often is to find a safe
heading that is as close to the user input as possible [8].

Some studies within the literature augment temporal and
kinematic quantitative task execution metrics with subjective
evaluations through questionnaires that solicit preference
from the users with or without autonomy; for example, the
NASA TLX questionnaire is used to observe workload from
the user’s perspective [9]. These approaches, however, may
not generalize depending on the impairment of the subject,
and continuously querying the user’s satisfaction with the
autonomy may undermine its acceptance.

One possible alternative is to observe continuous indi-
cations of the user’s condition via additional physiological
measurements (e.g skin conductivity gauges or heart rate
monitors). These sensors provide a continuous metric that
can be incorporated into the control paradigm; for example,
by relating pulsioximeter readings to user anxiety [10].
However, such sensors introduce additional complexity and
the results are susceptible to external disturbances.

The approach we present in this paper instead builds a
correlation model between subjective evaluations (of user
opinion and preference) and objective measures (effort,
safety, performance and utilization) available from the sen-
sors already onboard the robot platform (to enable the au-
tonomy capabilities). With such a model, it becomes feasible
to automatically adapt which shared-control paradigm is
employed by the autonomy, which might help to facilitate the
adoption of autonomy capabilities in powered wheelchairs.

III. EXPERIMENTAL EVALUATION

In this work, we develop an experimentally-derived model
to investigate the relationship between objective and subjec-
tive metrics of a shared-control task with an assistive robot.
The model aims to estimate, from task execution metrics, a
user’s preference over multiple shared-control paradigms.

Utilizing our modular software structure, we have pre-
viously performed a multi-session experiment that evalu-
ated user performance, effort and preference over assistive
paradigms and control interfaces [3]. This section summa-
rizes the experimental platform and protocol for that study.

A. Experimental Platform
We first present a brief summary of the control and hard-

ware architecture of our NURIC SMART WHEELCHAIR [3].
The software and hardware components are modular and
customizable—allowing for various control formulations and
sensors to be swapped in or out.

Fig. 1: NURIC SMART WHEELCHAIR hardware configura-
tion. The base system consists of an RGB-D sensor, a mini-
PC, converter boards and wheel encoders. Additional hard-
ware can be added based on a user’s needs and preferences.

1) Control Architecture: The control framework consists
of a modular software system which can be broadly char-
acterized as high-level and low-level behaviors, and a set of
reasoning modules for command and goal arbitration.

In particular, each high-level behaviors fhi(·) ∈ Fhi

outputs a goal g
g ← fhi(x) (1)

based on the current state x of the robot and the ob-
servable environment. These individual goals are generated
from perception algorithms that identify locations of interest
and inference algorithms that estimate intent from user
commands. Examples of implemented high-level behaviors
include traversing doorways, docking at tables and desks and
driving up ramps—all commonly challenging scenarios for
end-users. Once the goal set is populated g ∈ G (which also
might be empty), the goal arbitration module computes a
confidence cg for each element based on conflicts, feasibility,
perception confidence and agreement with human-generated
commands. From this, the highest-confidence goal g? ∈ G
that is above a predefined threshold is selected. Low-level
behaviors flo(·) ∈ Flo then output a control command ur

ur ← flo(x, g
?) (2)

based on the most confident goal g? and state x. The
command arbitration module reasons between the autonomy-
generated command ur and the human-generated command
uh. Specifically, arbitration function β(·)

u← β(uh,ur) (3)

generates a command u—which consists of translational ν
and rotational ω speed components—that drives the non-
holonomic robot system.

2) Hardware: The mechanical design of the NURIC
SMART WHEELCHAIR intentionally utilizes commercial
products to facilitate practical adoption by users. Specifically,
our system is built on a commercially-available powered
wheelchair, a Permobil C300 (Timra, Sweden), which we
then outfit with additional components including a computer,
electronics and sensors (Fig. 1).
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Fig. 2: The four shared-control paradigms of our study (P1-P4), which differ according to how the autonomy commands are
generated (immediate or perception goals) and how the control is shared between the user and autonomy (blending, filtering
or switching). In particular, navigation goals (blue circle) for the autonomy are inferred simply from a brief (0.5 sec) forward
projection of the human’s current control command (immediate goal, P1 and P2) or from a higher-level perception goal
(doorway) detected from sensor data (perception goal, P3 and P4). In either case, the same planner is used to generate a path
(dashed blue line) to the goal, and the same controller is used to drive that path. The human command might be linearly
blended [7] with the autonomy command (Blended, P2 and P3) or be capped [11] to not exceed the autonomy command in
safety-critical (e.g. collision with an obstacle) situations (Filtered, P1), or the autonomy might take over 100% control [12]
when relinquished by the human (Switch, P4). Doorway shown as a gap in the top gray line, robot footprint as a green
outline and obstacle as a gray box.

To interface with the proprietary wheelchair control loop,
we use the expandable input OMNI interface from R-Net
Electronics (Christchurch, UK)—originally designed to en-
able the use of third-party control interfaces. Our computer-
generated control commands u can drive the wheelchair
by mimicking a regular inductive joystick via a voltage
regulator. Additional hardware add-ons include an onboard
computer (mini-PC) that is powered by the wheelchair bat-
teries, electronics boards, override buttons, wheel encoders
and a top-mounted RGB-D sensor (Asus Xtion).

B. Shared-Control Paradigms

Our prior study evaluated four shared-control paradigms
(Fig. 2), sampled from the literature on wheelchair navigation
assistance. The paradigms differ in the way that (i) the
control authority is allocated and (ii) autonomy goals are
generated.

The overall purpose of each control paradigm is to com-
pute a control input u = [v, ω] that takes into consideration
the user signal uh = [vh, ωh], autonomy signal ur = [vr, ωr]
and environment information.

C. Experimental Protocol and Motivating Results

This section summarizes the experimental protocol of our
previous study that investigated user performance, preference
and effort under different shared-control paradigms and
control interfaces. Readers are referred to [3] for a detailed
analysis of this experiment.

Participants were asked to follow a predefined path in
our laboratory that traversed four doorways (Fig. 3). Due
to the challenging nature of the task and the prerequisite of
dexterous control, doorway navigation has been evaluated in
multiple smart wheelchair systems [13] and it is one of the
tasks in the Powered Wheelchair Skills Test [14] that assess
the ability of end-users to safely pilot a powered wheelchair.

Experiment participants included 7 SCI subjects (36-68
years old) and 7 uninjured subjects (23-37 years old). On
average, it had been 23.6±11.0 years since injury and the
SCI subjects had used a powered wheelchair for 21.0±11.4
years. The uninjured subjects had varying experience with
robotic systems but were mostly naive to wheelchair driving.

The overall experiment was divided into four phases, each
of which started two meters away from a door (t = t0) and
ended when the user safely traversed the doorway (t = tN ).
All experimental data was collected via the ROS pipeline and
the majority was sampled at 25 Hz (with the exception of
computationally expensive topics such as the 2-D costmap,
which was sampled at 7 Hz). MATLAB was used to segment
the doorway traversal time intervals and for data processing.

In a session, each navigation assistance paradigm was
evaluated twice and presented in a predefined randomized
order. Subjects were asked to perform a secondary session
at least one day and no more than 14 days after the first
session to help identify learning artifacts.

Upon completing a session, subjects (i) indicate their
most preferred control method and (ii) fill out the subjective
evaluation questionnaires for each assistance paradigm—
which queried for the user’s trust in, and perceived utility and
contribution of, the autonomy over a 7-point Likert scale.

Post-experiment analysis of the subjective evaluations
showed that 7 of the 14 participants chose a different
paradigm as most preferred in their second session. We also
observed noticeable (and sometimes significant) differences
in the performance, effort and preference of users under dif-
ferent shared-control paradigms [3]. In this paper, we extend
our analysis to build a correlation model that maps objective
execution metrics to subjective evaluations. Our aims are (i)
to highlight the reasons for observed differences between
subject groups, sessions and assistance paradigms, and (ii) to



Fig. 3: Sample experimental run, originally presented in [3].
Doorway traversal phases shown as differently colored lines,
and black dots are projected sensor data.

predict subjective evaluations online, which potentially could
be used to switch or modify autonomy paradigms on the fly.

IV. CORRELATION MODEL BETWEEN OBJECTIVE AND
SUBJECTIVE METRICS

Our approach models the correlation between user pref-
erence and execution metrics. This section formulates the
objective task execution metrics that are the inputs to the
correlation model, and then details the structure of the model.

A. Execution Metrics

For the execution metrics, four characteristics of robot
operation upon which shared-control paradigms frequently
are built [7] are chosen: effort, safety, performance and
utilization. In particular, the chosen task-specific metrics are:

• Task Completion Time: T = tN−t0, provides a measure
of task performance. Here t0 and tN represent the
starting and ending time of each doorway traversal.

• Minimum Distance to Obstacles: D = 1
N

∑tN
t0
||di||,

provides a measure for the user safety. Here ||di|| is the
minimum distance between the wheelchair footprint and
obstacles and N is the number of samples.

• Similarity of User and Executed Commands: S = 1 −
1
N

∑tN
t0
‖|ūt− ūt

h||, provides insight into utilization of
autonomy by comparing the executed command ut with
the user input ut

h.
• Mean Frequency of User Commands: M =

1
N

∑tN
t0

∑L
1 fiPi/

∑L
1 Pi, provides insight into user

effort. (The mean frequency of surface EMG signals
has been shown to indicate muscle fatigue [15].) Here
fi is the frequency value of the user signal’s power
spectrum Pi at frequency bin i, and L is the length of
the frequency bin.

Note that command frequency and similarity are metrics
specific to shared-control systems. By contrast, execution
time and distance to obstacles are common performance-
related metrics used to evaluate autonomous robotic systems.

B. Correlation Models

For the design of the correlation model, a cascaded
model structure is chosen. Specifically, this model maps (A)
objective task execution metrics to subjective evaluations
(scored on a Likert scale) and (B) these estimated subjective
evaluations to the most preferred assistance paradigm.

Eight pairs of A and B models are built, one for each com-
bination of subject group (2) and shared-control paradigm
(4). The end-to-end operation thus is to predict a distribu-
tion over shared-control paradigms from observed objective
metrics, conditioned on the control paradigm (and subject
affiliation) in use when the metrics are gathered. The dataset
for each model contains only 14 samples (7 subjects in each
of 2 sessions). Training and evaluation therefore is performed
using 7-folds cross-validation, where each fold is a split of
70% training, 15% testing and 15% validation data (used
during training to prevent over-fitting).

We evaluate a variety of off-the-shelf machine learning
tools to build each model: including linear regression with
Lasso regularization, decision and regression trees, support
vector regression and neural networks (all implementations
are performed in MATLAB using the Statistics and Machine
Learning and Neural Network Toolboxes). For all models, the
best regression performance is achieved with a multi-layer
feed-forward neural network.

1) Model A: Prediction of Subjective Evaluations: The
first model (A) of our cascade predicts the subjective scores.
Its input vector z ∈ R4 contains the 4 execution metrics
(Sec. IV-A) computed over 2 trials. Its output vector y ∈
R3 contains the 3 subjective evaluations (trust, contribution,
utility) rated on a Likert score. Each prediction y ∈ y is
continuous-valued and lies in y ∈ [1, 7].

A grid search is performed to optimize the number of
hidden layers and units that minimizes the total mean squared
error. For all models, 2 hidden layers using radial basis
activation functions with a single linear output layer are
found to perform the best. The only difference between
models is the number of neurons in each hidden layer. (SCI
models: P1 and P2 5-5, P3 and P4 20-5, uninjured models:
P1 5-5, P2 40-5, P3 5-5, P4 20-5.)

2) Model B: Prediction of Most Preferred Paradigm: The
second model (B) of our cascade predicts a distribution of
preference over shared-control paradigms. Its input vector
z ∈ R3 contains the 3 subjective evaluations (trust, con-
tribution, utility) predicted by the first model (A). Its output
vector y ∈ R5 is a probability distribution of preference over
the 4 shared-control paradigms plus a paradigm without any
autonomy (direct teleoperation).

Models are trained using the same optimization and cross-
validation routine described above. A neural network with 2
hidden layers again performs best, this time using hyperbolic
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Fig. 4: Subjective evaluation scores, measured (solid bars) and predicted (dashed bars), averaged across subject groups and
cross-validation folds.

tangent sigmoid activation functions and a soft max activa-
tion function in the final layer. Again, the only difference
between models is the number of neurons in each hidden
layer (all SCI models: 10-5, all uninjured models: 5-5).

V. EXPERIMENTAL RESULTS

We evaluate the performance of the cascaded correlation
model, and evaluate the relative contribution of each task
metric. Results suggest that task execution metrics can
infer user preference, even under different shared-control
paradigms, subject groups and sessions. Furthermore, a rela-
tive contribution analysis is performed to examine the effect
of different task execution metrics on user acceptance.

A. Prediction of Subjective Evaluations

The performance of the neural network regression is given
in Figure 4. The normalized mean square error averaged over
all control paradigms and cross-validation folds on the test
dataset is 2.0±1.2% for the SCI models and 2.1±1.1% for
the uninjured models. The proposed approach thus success-
fully estimates subjective evaluations based on the chosen
objective execution metrics.

B. Relative Contribution of Each Objective Metric

We further analyze the contribution of each performance
metric using sensitivity analysis. Input perturbation is shown
to effectively capture the relative contribution of each input
in comparison to other sensitivity analysis methods [16].
This method compares the rate of change in the mean
squared error of the measured and estimated values when
a perturbation is applied to each input as white noise with
magnitude between 5% to 50%.

For this analysis, for each of the eight subject-paradigm
datasets, we select from the 7-folds cross-validation the
best performing model. The entire dataset then is run, with
perturbations, through this model.

The corresponding mean squared error percentages are
plotted as a function of perturbation amount in Figure 5. The
sensitivity analysis results demonstrate that across shared-
control paradigms, there is a high variability in the depen-
dence of each model on the various metrics. That is, which
metrics have the greatest impact on prediction performance
changes depending on which shared-control paradigm is in
use—which helps to explain why we see better performance
when we partition the dataset and build paradigm-specific

models. Moreover, we also observe differences between sub-
ject groups—meaning that subjects’ evaluations of a control
paradigm are influenced by different metrics.

C. Prediction of Most Preferred Paradigm

The predicted subjective evaluation scores provide a quan-
titative evaluation of each shared-control paradigm. From
these values, estimating the most preferred paradigm could
enable adaptive assistance based on the user’s preference.

The prediction of most preferred paradigm is more com-
plex than simply selecting the highest-scoring paradigm. In 9
out of 28 cases, the most preferred shared-control paradigm
does not have the highest evaluation score. Moreover, in 3
of these 9 cases, no assistance was chosen as most preferred.

Our method computes a preference distribution over con-
trol paradigms. From this, we compute the most preferred
paradigm by taking the maximum of this distribution.1

A confusion matrix for the prediction of most preferred
paradigm is given in Figure 6. The test data accuracy
averaged over all models is 74.1% (while chance is 20%).

Unsurprisingly, performance declines with diminishing
instances of a given class. Performance overall is promis-
ing, though still leaves room for improvement. The gap
in prediction performance might be addressed with a more
sophisticated model or a larger dataset, or simply might be
a function of metrics unobservable to our current robotic
system (e.g. user fatigue).

VI. CONCLUSION

For the large-scale adoption of smart wheelchairs, control
sharing needs to accommodate each user’s unique motor
ability and personal preference. It is desirable to be able to
predict this preference without needing to constantly query
the user. In this work, we have shown that it is possible
to estimate user preference based on objective execution
metrics of the shared-control task chosen from the literature:
effort, safety, performance and utilization. Results from our
previous multi-session experiment revealed a subset of users
that change their most preferred shared-control paradigm
between sessions. Our proposed model successfully captures
the relation between execution metrics and user opinion in
this experimental data, including these preferences changes.

1For 5 of 28 datapoints, subjects indicated two paradigms equally as most
preferred. For these datapoints, we consider the prediction of either as most
preferred to be a true positive.
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The contribution of our work is to model the connection
between task execution metrics and user preference in a
human-robot system, while highlighting the relative contri-
bution of each of these objective metrics in the prediction of
most preferred paradigm.

Our future work includes a longitudinal study to investi-
gate the adaptation of users to the autonomy and how this
affects their preference. We expect that, with experience,
dissimilarity between the user and executed signals will
saturate to a steady state, and that the resulting change in
driving characteristics would reshape the correlation model.
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